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SHORTER COMMUNICATION 

HEATING OF A CYLINDRICAL CAVITY 
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NOMENCLATURE 

radius of cavity; 
exp(y); 
factors in small r expansion of Q, ; 
multiple Euler transformation of a series; 
terms of E(P) series. 
asymptotic expansibn of B,(r); 
thermal conductivity; 
a characteristic heat-transfer rate; 
Q&r); 
radius; 
initial temperature; 
temperature; 
time. 

Greek symbols 

? 
thermal diffusivity; 
gamma function; 

Y> Euler’s constant; 
8, W- To)k/(@); 
a. value of 8 for constant heating uroblem; 
0’ 

__ 
I? tl(r = a); 

2 
B(r = a); 
coefficients in small r expansion of 0, ; 

:.. 
a dimensionless surface heat-transfer rate; 
coefficient in small T expansion of 0,, 
see equation (5); 

r, at/a2 ; 
5, dummy variable. 

1. lNTRODUCTION 

THE SOLUTION to the problem of uniform heating, 0, of a 
cylindrical cavity wall of radius r = a where the material 
space r > (I is initially (time t = 0) at the uniform tempera- 
ture To, is presented in [l]. The solution for the dimen- 
sionless temperature 0 = 2(T- To)k/(@) (where k is the 
thermal conductivity) is given there in integral form. Leading 
terms in expansions for small and large dimensionless time 
r = m/a2 (where a is the thermaldiffusivity) are also obtained 
in [l]. These latter expansions do not share a common 
range of convergence. Accordingly, for moderate r, some 
results for 0 have been computed from numerical integration 
of the integral solution. The results are given in tabular 
form [2] and, for the cavity surface, they are plotted in [l]. 

In the usual manner, the utility of a step disturbance 
solution becomes significantly extended by taking advantage 
of the linearity of the problem, e.g. through the use of 
Duhamel’s integral to solve for transient problems with time 
varying surface heating. To follow such an attack in the 
present problem, i.e. to solve the problem for specific time 
varying surface cavity heating, one is required in one way 
or another to utilize the above mentioned tabular type 
presentation of the solution to the fundamental, constant 
surface heating problem. The whole procedure would be 

more attractive if an analytic representation for the fun- 
damental solution valid for all 7 > 0 could be obtained. 
In this regard one might hope, for example, to extend the 
useful range of the r expansion of t? into moderate to large T 
values, i.e. into the r range where the asymptotic, large r 
expansion of 0 is useful. In the present problem this cannot 
be done simply by obtaining a large number of terms in 
the small T expansion. Indeed, even if this latter expansion 
is convergent in some neighborhood of r = 0 it appears 
that the radius of convergence is severely restricted to a 
range 1r1 << 1. Nevertheless, by using an appropriate trans- 
formation of the terms of the small 7 expansion, useful results 
far beyond the above mentioned small r range can be 
extracted. 

The situation has been studied for the particularly 
interesting temperature history of the cavity surface. For 
this surface, application of the Euler transformation [3,4] 
to the original small r series representation of 0 has proven 
to be useful. Details of this application are presented in 
the next section. Finally, in the last section, the Euler 
transformation idea is extended to the case of time depen- 
dent surface heating and results are obtained in the example 
problem Q(7) _ TV. 

2. CAVITY SURFACE TEMPERATURE-UNIFORM HEATING 

Following rl] and extending the results presented there, 
the following expansions of L$(s) = &/a = 1, T) for large 
and small T, have been obtained 

Fir 0, = F,(r) = In(4r/C) + ln(4r/C)/(2r) 

+ 1/(2r) - 3 ln2(4r/C)/(16r2) - ln(4r/C)/(16r2) 
+ (x2 + 3)/(3272) +O(ln3 r/3) (1) 

0, = 2 d,rm’2/I’(l+m/2) 
III=, 

= ,I?, Am Tm’a =4+/n+-r+... (2) 

where dl = 2, d,+ 1 = 
(- ly”[(2m - l)!]’ 

25m-2m[(m- 1)!13 

‘“Z, 25”_‘[(n- l)!]s? 

In (-1)“(2n+1)!(2n-2)!d _ 
In n+l 

m>O, 

and where F(x) is the Gamma function and InC = y = 
0.5772.. . is Euler’s constant. 

.Following the above ideas of Section 1, the Euler trans- 
formation is introduced and applied to the expansion of 
equation (2). Thus, instead of approximating the infinite 
sum of equation (2) by generally useless (except for very 
small t) but rationally obtained partial sums we will 
approximate 0, by 

*Present address, Bell Laboratories, Whippany, New 
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&I = ~mTm12, &) = _ ‘5 (m-l)! 
2m,=I (m-n)!(n-l)! 

e$Z.‘!, p > 0. 
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Table 1. Computation from equation (3)for surface temperature 0, due to constant surface heating and for r = 10 and ‘I = 30 

M E”‘[&] 
Error 

estimate 
0, 

E’2’[S~] 

1 6.18 - 3.09 
2 1.11 52 O(100) 3.53 
3 7.40 * 3.90 
4 - 1.16 3.99 
5 1.63(10’) 4.16 
6 2.X7(10’) 4.12 
7 1.17(10~) 4.31 
8 - 3.96( 10’) 4.06 
9 1.67(103) 4.62 

10 - 7.59(103) 3.48 

Exact &f30) = 4.29 

t = 30 

Error 
estimate 

% 

O(12) 
O(lO) 
O(6) 

* 

E@‘[&] 
Error 

estimate 
0, 

E’4’[Su] 

1.55 
2.43 
2.97 
3.32 
3.56 
3.73 
3.85 
3.94 
4.01 
4.06 

7.73(10-i) 
1.38 
1.86 
2.25 
2.56 
2.81 
3.02 
3.20 
3.34 
3.46 

Error 
estimate 

% 

T = 10 

Error 
M E”‘[&j estimate P’[Su] 

% 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

3.57 - 1.78 
2.85 O(75) 2.50 
3.47 W9) 2.84 
3.05 W7) 3.02 
3.64 * 3.12 
2.79 3.18 
4.28 3.22 
1.19 3.25 
8.34 3.27 

- 9.82 3.28 

Exact &(lO) = 3.30 

Error 
estimate 

0, /O 
fP[SM] 

Error 
estimate 

0 i I‘3 

i 
O(7) 
O(4) 
O(3) 
O(2) 
O(1) 
O(O.6) 
O(O.4) 

0.45 
0.82 
1.15 
1.42 
1.66 
1.86 
2.04 
2.19 
2.32 
2.44 

Estimated UlO) = 3.28 {Exact errOr = o.87% 
Estimated error = 0(0.4)% 

*Series is asymptotic and it was truncated after previous term. 
tEstimate is less accurate than previous best estimate. 

Here E(p) is the p’th Euler transformation of partial sum 
of the series of equation (2). The whole idea of the Euler 
transformation is to render convergence, more rapid con- 
vergence, or more rapid asymptotic convergence to a 
divergent, slowly convergent, or asymptotically convergent 
expansion, A theoretical basis for the success of the trans- 
formation is discussed in [3]. If, for a particular p, the 
series of equation (3) will yield a useful approximation to 
0, then e$“(T) will generally decrease with increasing m. 
This decrease will be monotonic if the series is convergent 
or monotonic up to a particular m if the series is asymptotic 
(at which m the series is truncated). Further, an error 
estimate can be based on the order of magnitude of the 
“latter terms”, of this series. (In our application the order 
of magnitude of this error was taken to be the average of 
the orders of magnitude of the last two terms in the partial 
sum. Also, for a given approximation and error estimate 
pair to be valid it was required that it be consistent with 
the best approximation obtained with equation (3) and with 
the p- I transformation.) Fixing T and the number of terms, 
M, in the partial sum of equation (3), there is an optimum 
number of transformations, p, above which the estimate of 
equation (3) starts to deteriorate. 

0, was computed from equation (3) for different values 
of 5. The results of some of these calculations with M = 1 
to M = 10 are presented in Table 1. In accordance with the 
above remarks, and for every r considered, the suggested 
best estimate for 8, and its estimated error is finally given 

there along with the exact error (deduced from the afore- 
mentioned results given in [Z]). 

The most dramatic result that can be noted in Table 1 
is that the leading ten terms of the r expansion of equation (2) 
(which heretofore were totally useless in approximating Q, 
even to t = O(1)) have, under the multiple Euler trans- 
formation, yielded an estimate for &(r = 30) accurate to 
within 6% of the exact value. Furthermore, for each r con- 
sidered in the table the error estimate procedure suggested 
above has consistently yielded results in accordance with 
available exact results. It is of interest to note that increasing 
h4 to 19 and p to 3 the estimated error at r = 30 is 
minimized and equation (3) yields a result for r accurate 
to LOO/,. Further increase in M and p do not reduce the 
estimated error. 

Relative to accurate estimates for B,(r) for all r > 0, 
perhaps the most useful result indicated in Table 1 is that 
in the range t < 10, equation (3) (with p = 2 and M = 10) 
leads to 8, estimates accurate to within 0.9% of the exact 
values. This result is to be complemented with the result 
that the large r asymptotic representation for #,, equation 
(l), yields estimates to within 0 (0.5%) of exact values in 
the interval r 3 10. 

3. CAVITY SURFACE TEMPERATURE FOR 

VARlABLE HEATING-AN EXAMPLE 

Consider the problem of heating the initially uniform 
temperature solid r > a with a variable cavity surface flux 
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is bounded, the use of Duhamel’s integral results in the 
following equation for the cavity surface temperature history 

FIG. 1. Plot of &(t;q) in the range 0 c t < 2 for different 
values of q. 

6t 

FIG. 2. Plot of 0,(r; 4) in the range 1 < T < 30 for different 
values of q. 

Q(T) = @j(z), where 
Then, if 

!‘$4(7) = 0(7% 

Q is some characteristic heat flux. 

where q > -$, and if 
s 

‘+(t)dt; 
0 

Here e,(s) represents the fundamental constant surface 
heating solution of the previous section. Accordingly, for 
moderate z, using a representation for ir, per equation (3) 
in the above equation (4) is suggested. Doing this yields the 
following general solution representation for 8,(r) 

where 

R(7) = E@) 
[. 

F (m/2)1, h(z) 1 (5) =1 

It is expected that this latter result would yield a useful 
estimate for 0,(r) in the small to moderate r range. 

As an example consider the class of heating 4(7) = tq, 

q 2 -4. Then from equation (5) we obtain 

e,b; 4) = [7*r(q+1)/2lP) 7""* (6) 
3 

which we expect to yield a useful approximation for 
moderate to small 7. Besides the above result, equations 
(1) and (2) together with equation (4) can be used to obtain 
the following large 7 results 

lim e,(7;q) = rqlnz[l+O(l)]. 
T-m (7) 

0,(r; q) has been computed from equation (6) for different 
q’s, q > -4. In these calculations M and p were taken to 
be M < 25, p < 4. Plots of es are presented in Fig. 1 for 
0 < 7 < 2. Plots of & are presented in Fig. 2 for 1 < t < 30. 
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